Where Artificial Intelligence Went Wrong

If one were to rank a list of civilization's greatest and most elusive intellectual challenges, the problem of "decoding" ourselves — understanding the inner workings of our minds and our brains, and how the architecture of these elements is encoded in our genome — would surely be at the top. Yet the diverse fields that took on this challenge, from philosophy and psychology to computer science and neuroscience, have been fraught with disagreement about the right approach.

In 1956, the computer scientist John McCarthy coined the term "Artificial Intelligence" (AI) to describe the study of intelligence by implementing its essential features on a computer. Instantiating an intelligent system using man-made hardware, rather than our own "biological hardware" of cells and tissues, would show ultimate understanding, and have obvious practical applications in the creation of intelligent devices or even robots.

Some of McCarthy's colleagues in neighboring departments, however, were more interested in how intelligence is implemented in humans (and other animals) first. Noam Chomsky and others worked on what became cognitive science, a field aimed at uncovering the mental representations and rules that underlie our perceptual and cognitive abilities. Chomsky and his colleagues had to overthrow the then-dominant paradigm of behaviorism, championed by Harvard psychologist B.F. Skinner, where animal behavior was reduced to a simple set of associations between an action and its subsequent reward or punishment. The undoing of Skinner's grip on psychology is commonly marked by Chomsky's 1967 critical review of Skinner's book Verbal Behavior, a book in which Skinner attempted to explain linguistic ability using behaviorist principles.

Skinner's approach stressed the historical associations between a stimulus and the animal's response — an approach easily framed as a kind of empirical statistical analysis, predicting the future as a function of the past. Chomsky's conception of language, on the other hand, stressed the complexity of internal representations, encoded in the genome, and their maturation in light of the right data into a sophisticated computational system, one that cannot be usefully broken down into a set of associations. Behaviorist principles of associations could not explain the richness of linguistic knowledge, our endlessly creative use of it, or how quickly children acquire it with only minimal and imperfect exposure to language presented by their environment. The "language faculty," as Chomsky referred to it, was part of the organism's genetic endowment, much like the visual system, the immune system and the circulatory system, and we ought to approach it just as we approach these other more down-to-earth biological systems.

David Marr, a neuroscientist colleague of Chomsky's at MIT, defined a general framework for studying complex biological systems (like the brain) in his influential book Vision, one that Chomsky's analysis of the language capacity more or less fits into. According to Marr, a complex biological system can be understood at three distinct levels. The first level ("computational level") describes the input and output to the system, which define the task the system is performing. In the case of the visual system, the input might be the image projected on our retina and the output might our brain's identification of the objects present in the image we had observed. The second level ("algorithmic level") describes the procedure by which an input is converted to an output, i.e. how the image on our retina can be processed to achieve the task described by the computational level. Finally, the third level ("implementation level") describes how our own biological hardware of cells implements the procedure described by the algorithmic level.

The approach taken by Chomsky and Marr toward understanding how our minds achieve what they do is as different as can be from behaviorism. The emphasis here is on the internal structure of the system that enables it to perform a task, rather than on external association between past behavior of the system and the environment. The goal is to dig into the "black box" that drives the system and describe its inner workings, much like how a computer scientist would explain how a cleverly designed piece of software works and how it can be executed on a desktop computer.

As written today, the history of cognitive science is a story of the unequivocal triumph of an essentially Chomskyian approach over Skinner's behaviorist paradigm — an achievement commonly referred to as the "cognitive revolution," though Chomsky himself rejects this term. While this may be a relatively accurate depiction in cognitive science and psychology, behaviorist thinking is far from dead in related disciplines. Behaviorist experimental paradigms and associationist explanations for animal behavior are used routinely by neuroscientists who aim to study the neurobiology of behavior in laboratory animals such as rodents, where the systematic three-level framework advocated by Marr is not applied.

In May of last year, during the 150th anniversary of the Massachusetts Institute of Technology, a symposium on "Brains, Minds and Machines" took place, where leading computer scientists, psychologists and neuroscientists gathered to discuss the past and future of artificial intelligence and its connection to the neurosciences.

The gathering was meant to inspire multidisciplinary enthusiasm for the revival of the scientific question from which the field of artificial intelligence originated: how does intelligence work? How does our brain give rise to our cognitive abilities, and could this ever be implemented in a machine?

Noam Chomsky, speaking in the symposium, wasn't so enthused. Chomsky critiqued the field of AI for adopting an approach reminiscent of behaviorism, except in more modern, computationally sophisticated form. Chomsky argued that the field's heavy use of statistical techniques to pick regularities in masses of data is unlikely to yield the explanatory insight that science ought to offer. For Chomsky, the "new AI" — focused on using statistical learning techniques to better mine and predict data — is unlikely to yield general principles about the nature of intelligent beings or about cognition.

This critique sparked an elaborate reply to Chomsky from Google's director of research and noted AI researcher, Peter Norvig, who defended the use of statistical models and argued that AI's new methods and definition of progress is not far off from what happens in the other sciences.

Chomsky acknowledged that the statistical approach might have practical value, just as in the example of a useful search engine, and is enabled by the advent of fast computers capable of processing massive data. But as far as a science goes, Chomsky would argue it is inadequate, or more harshly, kind of shallow. We wouldn't have taught the computer much about what the phrase "physicist Sir Isaac Newton" really means, even if we can build a search engine that returns sensible hits to users who type the phrase in.

It turns out that related disagreements have been pressing biologists who try to understand more traditional biological systems of the sort Chomsky likened to the language faculty. Just as the computing revolution enabled the massive data analysis that fuels the "new AI", so has the sequencing revolution in modern biology given rise to the blooming fields of genomics and systems biology. High-throughput sequencing, a technique by which millions of DNA molecules can be read quickly and cheaply, turned the sequencing of a genome from a decade-long expensive venture to an affordable, commonplace laboratory procedure. Rather than painstakingly studying genes in isolation, we can now observe the behavior of a system of genes acting in cells as a whole, in hundreds or thousands of different conditions.

The sequencing revolution has just begun and a staggering amount of data has already been obtained, bringing with it much promise and hype for new therapeutics and diagnoses for human disease. For example, when a conventional cancer drug fails to work for a group of patients, the answer might lie in the genome of the patients, which might have a special property that prevents the drug from acting. With enough data comparing the relevant features of genomes from these cancer patients and the right control groups, custom-made drugs might be discovered, leading to a kind of "personalized medicine." Implicit in this endeavor is the assumption that with enough sophisticated statistical tools and a large enough collection of data, signals of interest can be weeded it out from the noise in large and poorly understood biological systems.

The success of fields like personalized medicine and other offshoots of the sequencing revolution and the systems-biology approach hinge upon our ability to deal with what Chomsky called "masses of unanalyzed data" — placing biology in the center of a debate similar to the one taking place in psychology and artificial intelligence since the 1960s.

Systems biology did not rise without skepticism. The great geneticist and Nobel-prize winning biologist Sydney Brenner once defined the field as "low input, high throughput, no output science." Brenner, a contemporary of Chomsky who also participated in the same symposium on AI, was equally skeptical about new systems approaches to understanding the brain. When describing an up-and-coming systems approach to mapping brain circuits called Connectomics, which seeks to map the wiring of all neurons in the brain (i.e. diagramming which nerve cells are connected to others), Brenner called it as a "form of insanity."

Brenner's catch-phrase bite at systems biology and related techniques in neuroscience is not far off from Chomsky's criticism of AI. An unlikely pair, systems biology and artificial intelligence both face the same fundamental task of reverse-engineering a highly complex system whose inner workings are largely a mystery. Yet, ever-improving technologies yield massive data related to the system, only a fraction of which might be relevant. Do we rely on powerful computing and statistical approaches to tease apart signal from noise, or do we look for the more basic principles that underlie the system and explain its essence? The urge to gather more data is irresistible, though it's not always clear what theoretical framework these data might fit into. These debates raise an old and general question in the philosophy of science: What makes a satisfying scientific theory or explanation, and how ought success be defined for science?

I sat with Noam Chomsky on an April afternoon in a somewhat disheveled conference room, tucked in a hidden corner of Frank Gehry's dazzling Stata Center at MIT. I wanted to better understand Chomsky's critique of artificial intelligence and why it may be headed in the wrong direction. I also wanted to explore the implications of this critique for other branches of science, such neuroscience and systems biology, which all face the challenge of reverse-engineering complex systems — and where researchers often find themselves in an ever-expanding sea of massive data. The motivation for the interview was in part that Chomsky is rarely asked about scientific topics nowadays. Journalists are too occupied with getting his views on U.S. foreign policy, the Middle East, the Obama administration and other standard topics. Another reason was that Chomsky belongs to a rare and special breed of intellectuals, one that is quickly becoming extinct. Ever since Isaiah Berlin's famous essay, it has become a favorite pastime of academics to place various thinkers and scientists on the "Hedgehog-Fox" continuum: the Hedgehog, a meticulous and specialized worker, driven by incremental progress in a clearly defined field versus the Fox, a flashier, ideas-driven thinker who jumps from question to question, ignoring field boundaries and applying his or her skills where they seem applicable. Chomsky is special because he makes this distinction seem like a tired old cliche. Chomsky's depth doesn't come at the expense of versatility or breadth, yet for the most part, he devoted his entire scientific career to the study of defined topics in linguistics and cognitive science. Chomsky's work has had tremendous influence on a variety of fields outside his own, including computer science and philosophy, and he has not shied away from discussing and critiquing the influence of these ideas, making him a particularly interesting person to interview. Videos of the interview can be found here.

I want to start with a very basic question. At the beginning of AI, people were extremely optimistic about the field's progress, but it hasn't turned out that way. Why has it been so difficult? If you ask neuroscientists why understanding the brain is so difficult, they give you very intellectually unsatisfying answers, like that the brain has billions of cells, and we can't record from all of them, and so on.

Chomsky: There's something to that. If you take a look at the progress of science, the sciences are kind of a continuum, but they're broken up into fields. The greatest progress is in the sciences that study the simplest systems. So take, say physics — greatest progress there. But one of the reasons is that the physicists have an advantage that no other branch of sciences has. If something gets too complicated, they hand it to someone else.

Like the chemists?

Chomsky: If a molecule is too big, you give it to the chemists. The chemists, for them, if the molecule is too big or the system gets too big, you give it to the biologists. And if it gets too big for them, they give it to the psychologists, and finally it ends up in the hands of the literary critic, and so on. So what the neuroscientists are saying is not completely false.

However, it could be — and it has been argued in my view rather plausibly, though neuroscientists don't like it — that neuroscience for the last couple hundred years has been on the wrong track. There's a fairly recent book by a very good cognitive neuroscientist, Randy Gallistel and King, arguing — in my view, plausibly — that neuroscience developed kind of enthralled to associationism and related views of the way humans and animals work. And as a result they've been looking for things that have the properties of associationist psychology.

Like Hebbian plasticity? [Editor's note: A theory, attributed to Donald Hebb, that associations between an environmental stimulus and a response to the stimulus can be encoded by strengthening of synaptic connections between neurons.]

Chomsky: Well, like strengthening synaptic connections. Gallistel has been arguing for years that if you want to study the brain properly you should begin, kind of like Marr, by asking what tasks is it performing. So he's mostly interested in insects. So if you want to study, say, the neurology of an ant, you ask what does the ant do? It turns out the ants do pretty complicated things, like path integration, for example. If you look at bees, bee navigation involves quite complicated computations, involving position of the sun, and so on and so forth. But in general what he argues is that if you take a look at animal cognition, human too, it's computational systems. Therefore, you want to look the units of computation. Think about a Turing machine, say, which is the simplest form of computation, you have to find units that have properties like "read", "write" and "address." That's the minimal computational unit, so you got to look in the brain for those. You're never going to find them if you look for strengthening of synaptic connections or field properties, and so on. You've got to start by looking for what's there and what's working and you see that from Marr's highest level.

Right, but most neuroscientists do not sit down and describe the inputs and outputs to the problem that they're studying. They're more driven by say, putting a mouse in a learning task and recording as many neurons possible, or asking if Gene X is required for the learning task, and so on. These are the kinds of statements that their experiments generate.

Chomsky: That's right..

Is that conceptually flawed?

Chomsky: Well, you know, you may get useful information from it. But if what's actually going on is some kind of computation involving computational units, you're not going to find them that way. It's kind of, looking at the wrong lamp post, sort of. It's a debate… I don't think Gallistel's position is very widely accepted among neuroscientists, but it's not an implausible position, and it's basically in the spirit of Marr's analysis. So when you're studying vision, he argues, you first ask what kind of computational tasks is the visual system carrying out. And then you look for an algorithm that might carry out those computations and finally you search for mechanisms of the kind that would make the algorithm work. Otherwise, you may never find anything. There are many examples of this, even in the hard sciences, but certainly in the soft sciences. People tend to study what you know how to study, I mean that makes sense. You have certain experimental techniques, you have certain level of understanding, you try to push the envelope — which is okay, I mean, it's not a criticism, but people do what you can do. On the other hand, it's worth thinking whether you're aiming in the right direction. And it could be that if you take roughly the Marr-Gallistel point of view, which personally I'm sympathetic to, you would work differently, look for different kind of experiments.

Right, so I think a key idea in Marr is, like you said, finding the right units to describing the problem, sort of the right "level of abstraction" if you will. So if we take a concrete example of a new field in neuroscience, called Connectomics, where the goal is to find the wiring diagram of very complex organisms, find the connectivity of all the neurons in say human cerebral cortex, or mouse cortex. This approach was criticized by Sidney Brenner, who in many ways is [historically] one of the originators of the approach. Advocates of this field don't stop to ask if the wiring diagram is the right level of abstraction — maybe it's not, so what is your view on that?

Chomsky: Well, there are much simpler questions. Like here at MIT, there's been an interdisciplinary program on the nematode C. elegans for decades, and as far as I understand, even with this miniscule animal, where you know the wiring diagram, I think there's 800 neurons or something …

I think 300..

Chomsky: …Still, you can't predict what the thing [C. elegans nematode] is going to do. Maybe because you're looking in the wrong place.

I'd like to shift the topic to different methodologies that were used in AI. So "Good Old Fashioned AI," as it's labeled now, made strong use of formalisms in the tradition ofGottlob Frege and Bertrand Russell, mathematical logic for example, or derivatives of it, like nonmonotonic reasoning and so on. It's interesting from a history of science perspective that even very recently, these approaches have been almost wiped out from the mainstream and have been largely replaced — in the field that calls itself AI now — by probabilistic and statistical models. My question is, what do you think explains that shift and is it a step in the right direction?

Chomsky: I heard Pat Winston give a talk about this years ago. One of the points he made was that AI and robotics got to the point where you could actually do things that were useful, so it turned to the practical applications and somewhat, maybe not abandoned, but put to the side, the more fundamental scientific questions, just caught up in the success of the technology and achieving specific goals.

So it shifted to engineering…

Chomsky: It became… well, which is understandable, but would of course direct people away from the original questions. I have to say, myself, that I was very skeptical about the original work. I thought it was first of all way too optimistic, it was assuming you could achieve things that required real understanding of systems that were barely understood, and you just can't get to that understanding by throwing a complicated machine at it. If you try to do that you are led to a conception of success, which is self-reinforcing, because you do get success in terms of this conception, but it's very different from what's done in the sciences. So for example, take an extreme case, suppose that somebody says he wants to eliminate the physics department and do it the right way. The "right" way is to take endless numbers of videotapes of what's happening outside the video, and feed them into the biggest and fastest computer, gigabytes of data, and do complex statistical analysis — you know, Bayesian this and that [Editor's note: A modern approach to analysis of data which makes heavy use of probability theory.] — and you'll get some kind of prediction about what's gonna happen outside the window next. In fact, you get a much better prediction than the physics department will ever give. Well, if success is defined as getting a fair approximation to a mass of chaotic unanalyzed data, then it's way better to do it this way than to do it the way the physicists do, you know, no thought experiments about frictionless planes and so on and so forth. But you won't get the kind of understanding that the sciences have always been aimed at — what you'll get at is an approximation to what's happening.

And that's done all over the place. Suppose you want to predict tomorrow's weather. One way to do it is okay I'll get my statistical priors, if you like, there's a high probability that tomorrow's weather here will be the same as it was yesterday in Cleveland, so I'll stick that in, and where the sun is will have some effect, so I'll stick that in, and you get a bunch of assumptions like that, you run the experiment, you look at it over and over again, you correct it by Bayesian methods, you get better priors. You get a pretty good approximation of what tomorrow's weather is going to be. That's not what meteorologists do — they want to understand how it's working. And these are just two different concepts of what success means, of what achievement is. In my own field, language fields, it's all over the place. Like computational cognitive science applied to language, the concept of success that's used is virtually always this. So if you get more and more data, and better and better statistics, you can get a better and better approximation to some immense corpus of text, like everything in The Wall Street Journal archives — but you learn nothing about the language.

A very different approach, which I think is the right approach, is to try to see if you can understand what the fundamental principles are that deal with the core properties, and recognize that in the actual usage, there's going to be a thousand other variables intervening — kind of like what's happening outside the window, and you'll sort of tack those on later on if you want better approximations, that's a different approach. These are just two different concepts of science. The second one is what science has been since Galileo, that's modern science. The approximating unanalyzed data kind is sort of a new approach, not totally, there's things like it in the past. It's basically a new approach that has been accelerated by the existence of massive memories, very rapid processing, which enables you to do things like this that you couldn't have done by hand. But I think, myself, that it is leading subjects like computational cognitive science into a direction of maybe some practical applicability…

..in engineering?

Chomsky: …But away from understanding. Yeah, maybe some effective engineering. And it's kind of interesting to see what happened to engineering. So like when I got to MIT, it was 1950s, this was an engineering school. There was a very good math department, physics department, but they were service departments. They were teaching the engineers tricks they could use. The electrical engineering department, you learned how to build a circuit. Well if you went to MIT in the 1960s, or now, it's completely different. No matter what engineering field you're in, you learn the same basic science and mathematics. And then maybe you learn a little bit about how to apply it. But that's a very different approach. And it resulted maybe from the fact that really for the first time in history, the basic sciences, like physics, had something really to tell engineers. And besides, technologies began to change very fast, so not very much point in learning the technologies of today if it's going to be different 10 years from now. So you have to learn the fundamental science that's going to be applicable to whatever comes along next. And the same thing pretty much happened in medicine. So in the past century, again for the first time, biology had something serious to tell to the practice of medicine, so you had to understand biology if you want to be a doctor, and technologies again will change. Well, I think that's the kind of transition from something like an art, that you learn how to practice — an analog would be trying to match some data that you don't understand, in some fashion, maybe building something that will work — to science, what happened in the modern period, roughly Galilean science.

I see. Returning to the point about Bayesian statistics in models of language and cognition. You've argued famously that speaking of the probability of a sentence is unintelligible on its own…

Chomsky: ..Well you can get a number if you want, but it doesn't mean anything.

It doesn't mean anything. But it seems like there's almost a trivial way to unify the probabilistic method with acknowledging that there are very rich internal mental representations, comprised of rules and other symbolic structures, and the goal of probability theory is just to link noisy sparse data in the world with these internal symbolic structures. And that doesn't commit you to saying anything about how these structures were acquired — they could have been there all along, or there partially with some parameters being tuned, whatever your conception is. But probability theory just serves as a kind of glue between noisy data and very rich mental representations.

Chomsky: Well… there's nothing wrong with probability theory, there's nothing wrong with statistics.

But does it have a role?

Chomsky: If you can use it, fine. But the question is what are you using it for? First of all, first question is, is there any point in understanding noisy data? Is there some point to understanding what's going on outside the window?

Well, we are bombarded with it [noisy data], it's one of Marr's examples, we are faced with noisy data all the time, from our retina to…

Chomsky: That's true. But what he says is: Let's ask ourselves how the biological system is picking out of that noise things that are significant. The retina is not trying to duplicate the noise that comes in. It's saying I'm going to look for this, that and the other thing. And it's the same with say, language acquisition. The newborn infant is confronted with massive noise, what William James called "a blooming, buzzing confusion," just a mess. If say, an ape or a kitten or a bird or whatever is presented with that noise, that's where it ends. However, the human infants, somehow, instantaneously and reflexively, picks out of the noise some scattered subpart which is language-related. That's the first step. Well, how is it doing that? It's not doing it by statistical analysis, because the ape can do roughly the same probabilistic analysis. It's looking for particular things. So psycholinguists, neurolinguists, and others are trying to discover the particular parts of the computational system and of the neurophysiology that are somehow tuned to particular aspects of the environment. Well, it turns out that there actually are neural circuits which are reacting to particular kinds of rhythm, which happen to show up in language, like syllable length and so on. And there's some evidence that that's one of the first things that the infant brain is seeking — rhythmic structures. And going back to Gallistel and Marr, its got some computational system inside which is saying "okay, here's what I do with these things" and say, by nine months, the typical infant has rejected — eliminated from its repertoire — the phonetic distinctions that aren't used in its own language. So initially of course, any infant is tuned to any language. But say, a Japanese kid at nine months won't react to the R-L distinction anymore, that's kind of weeded out. So the system seems to sort out lots of possibilities and restrict it to just ones that are part of the language, and there's a narrow set of those. You can make up a non-language in which the infant could never do it, and then you're looking for other things. For example, to get into a more abstract kind of language, there's substantial evidence by now that such a simple thing as linear order, what precedes what, doesn't enter into the syntactic and semantic computational systems, they're just not designed to look for linear order. So you find overwhelmingly that more abstract notions of distance are computed and not linear distance, and you can find some neurophysiological evidence for this, too. Like if artificial languages are invented and taught to people, which use linear order, like you negate a sentence by doing something to the third word. People can solve the puzzle, but apparently the standard language areas of the brain are not activated — other areas are activated, so they're treating it as a puzzle not as a language problem. You need more work, but…

You take that as convincing evidence that activation or lack of activation for the brain area …

Chomsky: …It's evidence, you'd want more of course. But this is the kind of evidence, both on the linguistics side you look at how languages work — they don't use things like third word in sentence. Take a simple sentence like "Instinctively, Eagles that fly swim", well, "instinctively" goes with swim, it doesn't go with fly, even though it doesn't make sense. And that's reflexive. "Instinctively", the adverb, isn't looking for the nearest verb, it's looking for the structurally most prominent one. That's a much harder computation. But that's the only computation which is ever used. Linear order is a very easy computation, but it's never used. There's a ton of evidence like this, and a little neurolinguistic evidence, but they point in the same direction. And as you go to more complex structures, that's where you find more and more of that.

That's, in my view at least, the way to try to discover how the system is actually working, just like in vision, in Marr's lab, people like Shimon Ullman discovered some pretty remarkable things like the rigidity principle. You're not going to find that by statistical analysis of data. But he did find it by carefully designed experiments. Then you look for the neurophysiology, and see if you can find something there that carries out these computations. I think it's the same in language, the same in studying our arithmetical capacity, planning, almost anything you look at. Just trying to deal with the unanalyzed chaotic data is unlikely to get you anywhere, just like as it wouldn't have gotten Galileo anywhere. In fact, if you go back to this, in the 17th century, it wasn't easy for people like Galileo and other major scientists to convince the NSF [National Science Foundation] of the day — namely, the aristocrats — that any of this made any sense. I mean, why study balls rolling down frictionless planes, which don't exist. Why not study the growth of flowers? Well, if you tried to study the growth of flowers at that time, you would get maybe a statistical analysis of what things looked like.

It's worth remembering that with regard to cognitive science, we're kind of pre-Galilean, just beginning to open up the subject. And I think you can learn something from the way science worked [back then]. In fact, one of

Leave a comment