avatar
The Planetary Emergency


Capitalism today is caught in a seemingly endless crisis, with economic stagnation and upheaval circling the globe.1 But while the world has been fixated on the economic problem, global environmental conditions have been rapidly worsening, confronting humanity with its ultimate crisis: one of long-term survival. The common source of both of these crises resides in the process of capital accumulation. Likewise the common solution is to be sought in a “revolutionary reconstitution of society at large,” going beyond the regime of capital.2

It is still possible for humanity to avert what economist Robert Heilbroner once called “ecological Armageddon.”3 The means for the creation of a just and sustainable world currently exist, and are to be found lying hidden in the growing gap between what could be achieved with the resources already available to us, and what the prevailing social order allows us to accomplish. It is this latent potential for a quite different human metabolism with nature that offers the master-key to a workable ecological exit strategy.

The Approaching Ecological Precipice

Science today tells us that we have a generation at most in which to carry out a radical transformation in our economic relations, and our relations with the earth, if we want to avoid a major tipping point or “point of no return,” after which vast changes in the earth’s climate will likely be beyond our ability to prevent and will be irreversible.4 At that point it will be impossible to stop the ice sheets in Antarctica and Greenland from continuing to melt, and thus the sea level from rising by as much as “tens of meters.”5 Nor will we be able to prevent the Arctic sea ice from vanishing completely in the summer months, or carbon dioxide and methane from being massively released by the decay of organic matter currently trapped beneath the permafrost—both of which would represent positive feedbacks dangerously accelerating climate change. Extreme weather events will become more and more frequent and destructive. An article in the Proceedings of the National Academy of Sciences demonstrated that the record-breaking heat wave that hit the Moscow area in 2010 with disastrous effect was made five times more likely, in the decade ending in that year as compared with earlier decades, due to the warming trend, implying “an approximate 80% probability” that it “would not have occurred without climate warming.” Other instances of extreme weather such as the deadly European heat wave in 2003 and the serious drought in Oklahoma and Texas in 2011, have been shown to be connected to earth warming. Hurricane Sandy, which devastated much of New York and New Jersey at the end of October 2012, was impacted and amplified to a considerable extent by climate change.6

The point of irreversible climate change is usually thought of as a 2°C (3.6°F) increase in global average temperature, which has been described as equivalent at the planetary level to the “cutting down of the last palm tree” on Easter Island. An increase of 2°C in global average temperature coincides roughly with cumulative carbon emissions of around one trillion metric tons. Based on past emissions trends it is predicted by climate scientists at Oxford University that we will hit the one trillion metric ton mark in 2043, or thirty-one years from now. We could avoid emitting the trillionth metric ton if we were to reduce our carbon emissions beginning immediately by an annual rate of 2.4 percent a year.7

To be sure, climate science is not exact enough to pinpoint precisely how much warming will push us past a planetary tipping point.8 But all the recent indications are that if we want to avoid planetary disaster we need to stay considerably below 2°C. As a result, almost all governments have signed on to staying below 2°C as a goal at the urging of the UN’s Intergovernmental Panel on Climate Change. More and more, 2°C has come to symbolize the reality of a planetary point of no return. In this sense, all the discussions of what the climate will be like if the world warms to 3°C, or all the way to 6°C, are relatively meaningless.9 Before such temperatures are attained, we will have already reached the limits of our ability to control the climate-change process, and we will then be left with the task of adapting to apocalyptic ecological conditions. Already Arctic sea ice experienced a record melt in the summer of 2012 with some scientists predicting an ice-free Arctic in the summer as early as 2016–2020. In the words of James Hansen, the world’s leading climatologist, we are facing a “planetary emergency”—since if we approach 2°C “we will have started a process that is out of humanity’s control.”10

Given all of this, actually aiming for the one trillion metric ton mark in cumulative carbon emissions, or a 2°C increase in global temperature, would be courting long-term disaster. Some prominent climate analysts have proposed a target of staying below 750 billion cumulative metric tons of carbon—estimated to provide a 75 percent chance of staying below the climate-change tipping point. At current rates of carbon emissions it is calculated that we will reach the 750 billion metric tons mark in 2028, or sixteen years. We could avoid emitting the 750 billionth metric ton if we were to reduce our carbon emissions beginning immediately at an average annual rate of 5.3 percent.11 To get some perspective on this, the Stern Review on The Economics of Climate Change issued by the British government in 2007, which is generally seen as representing the progressive side of the carbon debate, argued that a reduction in emissions of more than a 1 percent annual rate would generate a severe crisis for the capitalist economy and hence was unthinkable.12

Many thought that the Great Financial Crisis would result in a sharp curtailment of carbon emissions, helping to limit global warming. Carbon emissions dipped by 1.4 percent in 2009, but this brief decline was more than offset by a record 5.9 percent growth of carbon emissions in 2010, even as the world economy as a whole continued to stagnate. This rapid increase has been attributed primarily to the increasing fossil-fuel intensity of the world economy, and to the continued expansion of emerging economies, notably China.13

In an influential article published in Nature Climate Change, “Asymmetric Effects of Economic Decline on CO2 Emissions,” Richard York used data for over 150 countries between 1960 and 2008 to demonstrate that carbon dioxide emissions do not decline in the same proportion in an economic downturn as they increase in an economic upturn. Thus for each 1 percent in the growth of GDP per capita, carbon emissions grew by 0.733 percent, whereas for each 1 percent drop in GDP, carbon emissions fell by only 0.430 percent. These asymmetric effects can be attributed to built-in infrastructural conditions—factories, transportation networks, and homes—meaning that these structures do not disappear during recessions and continue to influence fossil-fuel consumption. It follows of necessity that a boom-and-bust economic system cannot reduce carbon emissions; that can only be achieved by an economy that reduces such emissions on a steady basis along with changes in the infrastructure of production and society in general.14

Indeed, there is reason to believe that there is a strong pull on capitalism in its current monopoly-finance phase to seek out more fossil-fuel intensive forms of production the more deeply it falls into the stagnation trap, resulting in repeated attempts to restart the growth engine by, in effect, giving it more gas. According to the Low Carbon Index, the carbon intensity of world production fell by 0.8 percent in 2009, and by 0.7 percent in 2010. However, in 2011 the carbon intensity of world production rose by 0.6 percent. “The economic recovery, where it has occurred, has been dirty.”15 The notion that a stagnant-prone capitalist growth economy (what Herman Daly calls a “failed growth economy”) would be even more intensively destructive of the environment was a thesis advanced as early as 1976 by the pioneering Marxist environmental sociologist Charles H. Anderson. As Anderson put it, “as the threat of stagnation mounts, so does the need for throughput in order to maintain tolerable growth rates.”16

The hope of many that peak crude oil production and the end of cheap oil would serve to limit carbon emissions has also proven false. It is clear that in the age of enhanced worldwide coal production, fracking, and tar sands oil there is no shortage of carbon with which to heat up the planet. Today’s known stocks of oil, coal, and gas reserves are at least five times the planet’s remaining carbon budget, amounting to 2.8 gigatons in carbon potential, and the signs are that the capitalist system intends to burn it all.17 As Bill McKibben observed in relation to these fossil-fuel reserves: “Yes, this coal and oil is still technically in the soil. But it’s already economically aboveground.”18 Corporations and governments count these carbon resources as financial assets, which means they are intended for exploitation. Not too long ago environmentalists were worried about the world running out of fossil fuels (especially crude oil); now this has been inverted by climate-change concerns.

As bad as the climate crisis is, however, it is important to understand that it is only a part of the larger global ecological crisis—since climate change is merely one among a number of dangerous rifts in planetary boundaries arising from human transformations of the earth. Ocean acidification, destruction of the ozone layer, species extinction, the disruption of the nitrogen and phosphorus cycles, growing fresh water shortages, land-cover change, and chemical pollution all represent global ecological transformations/crises. Already we have crossed the planetary boundaries (designated by scientists based on departure from Holocene conditions) not only in relation to climate change, but also with respect to species extinction and the nitrogen cycle. Species extinction is occurring at about a thousand times the “background rate,” a phenomenon known as the “sixth extinction” (referring back to the five previous periods of mass extinctions in earth history—the most recent of which, 65 million years ago, resulted in the extinction of the dinosaurs). Nitrogen pollution now constitutes a major cause of dead zones in oceans. Other developing planetary rifts, such as ocean acidification (known as the “evil twin” of climate change since it is also caused by carbon emissions), and chronic loss of freshwater supplies, which is driving the global privatization of water, are of growing concern. All of this raises basic questions of survival: the ultimate crisis confronting humanity.19

The Ultimate Crisis

The scale and speed of the emerging ecological challenge, manifested not only in climate change but also in numerous other planetary rifts, constitutes irrefutable evidence that the root cause of the environmental problem lies in our socioeconomic system, and particularly in the dynamic of capital accumulation.

Faced with such intractable problems, the response of the dominant interests has always been that technology, supplemented by market magic and population control, can solve all problems, allowing for unending capital accumulation and economic growth without undue ecological effects by means of an absolute decoupling of growth from environmental throughput. Thus, when asked about the problems posed by fossil fuels (including tar sands oil, shale oil and gas, and coal) President Obama responded: “All of us are going to have to work together in an effective way to figure out how we balance the imperative of economic growth with very real concerns about the effect we’re having on our planet. And ultimately I think this can be solved with technology.”20

Yet, the dream that technology alone, considered in some abstract sense, can solve the environmental problem, allowing for unending economic growth without undue ecological effects through an absolute decoupling of one from the other, is quickly fading.21 Not only are technological solutions limited by the laws of physics, namely the second law of thermodynamics (which tells us, for example, that free and complete recycling is impossible), but they are also subject to the laws of capitalism itself.22 Technological change under the present system routinely brings about relative efficiency gains in energy use, reducing the energy and raw material input per unit of output. Yet, this seldom results in absolute decreases in environmental throughput at the aggregate level; rather the tendency is toward the ever-greater use of energy and materials. This is captured by the well-known Jevons paradox, named after the nineteenth-century economist William Stanley Jevons. Jevons pointed out that gains in energy efficiency almost invariably increase the absolute amount of energy used, since such efficiency feeds economic expansion. Jevons highlighted how each new steam engine from Watt’s famous engine on was more efficient in its use of coal than the one before, yet the introduction of each improved steam engine nonetheless resulted in a greater absolute use of coal.23

In reality the Jevons paradox as originally conceived is merely a restrictive application of the efficiency paradox of capitalism in general. Gains in labor productivity, for example, do not generally lead to less overall total labor time spent in production, since the object of all such gains is to promote further accumulation. As Marx remarked, the lessening of toil is “by no means the aim of the application of machinery under capitalism…. The machine is a means for producing surplus-value” and enhancing capital accumulation without end.24

Marx captured the expansive nature and logic of capitalism as a system in what he called “the general formula of capital,” or M-C-M′. In a simple commodity economy, money exists merely as an intermediary to facilitate exchange between distinct commodities associated with definite use values, or C-M-C. The exchange begins with one use value and ends with another, with the consumption of the final commodity constituting the end of the process. Capitalism, however, takes the form of M-C-M′, with money (M) being exchanged for labor and material means of production with which to produce a new commodity (C), to be exchanged for more money (M′), which realizes the original value plus added value, i.e., surplus value or profit (M + Δ m). Here the process does not logically end with the receipt of M′. Rather the profit is reinvested so that it leads in the next phase to M-C-M′′, and then to M-C-M′′′, in an unending sequence only interrupted by periodic economic crises. Capital in this conception is nothing but self-expanding value, and is indistinguishable from the drive to accumulate on an ever-increasing scale: “Accumulate, accumulate! That is Moses and the prophets!”25

This ceaseless drive for the amassing of greater and greater wealth, requiring more and more consumption of energy and resources, and generating more waste, constitutes “the absolute general law of environmental degradation under capitalism.”26 Today the scale of the human economy has become so large that its everyday activities, such as carbon dioxide emissions and freshwater use, now threaten the fundamental biogeochemical processes of the planet.

Ecological analysis points quite irrefutably to the fact that we are up against the earth’s limits. Not only is continued exponential economic growth no longer possible for any length of time, but also it is necessary to reduce the ecological footprint of the world economy. And since there is no such thing as an absolute decoupling of the economy from ecological consumption this means the size of the world economy must also not increase; instead, it must decrease in size.27 On top of this and reinforcing this dilemma, the world economy must wean itself entirely from fossil fuels as an energy source—before the one trillion metric ton (and hopefully before the 750 billionth metric ton) of carbon is emitted into the atmosphere. Yet without the subsidy of fossil fuels a continuation of world-capitalist-industrial economy in its present form will prove impossible.28

Monopoly Capital and a “Prosperous Way Down”

In order to understand why the ecological problem is so intractable for capitalism, and what this tells us about the necessary exit from our present planetary emergency, it is useful to look at a passage by Monthly Review editors Harry Magdoff and Paul Sweezy, written almost forty years ago, but well worth examining at length today:

Take…the deep-seated faith that increasing production and productivity are the sovereign panacea for all the ills of capitalism…. It is clear that this myth has been severely shaken as we have become aware of growing shortages of raw materials and energy sources and of the increasingly severe impact of multifarious forms of pollution on the health and well-being of whole populations. Instead of a universal panacea, it turns out that growth is itself a cause of disease. But how is one to stop growth and yet keep capitalist enterprise afloat? In the absence of growth, for example, industries that produce machinery and other means of production would wither, since they would be confined to making only replacement equipment. Declining capital goods industries in turn would result in reduced employment and thus declining consumer demand, which in turn would end up in shutdowns of factories manufacturing consumer goods.

But this is only one side of the picture. Suppose we forget about trying to control growth and instead focus on abating the effects of growth by reducing pollution and arranging for a more rational use of raw materials and energy. Such an approach, it is clear, would entail a high degree of social planning: nothing less than a wholesale redirection of the economy involving, among other things, changes in population distribution, methods of transportation, and plant locations—none of which can be subjected to real social planning without violating the rights of private property in land, factories, stocks and bonds, etc.

From whichever side the problem is approached—controlling growth or restructuring existing production, transportation, and residential patterns—we come up against antagonisms and conflicts of interest that capitalists and those charged with protecting capitalist society cannot, in the very nature of the case, face up to. In the final analysis, what stands in the way of any effective action is the contradiction between the social potential of present-day technology and the antisocial results of private ownership of the means of production.29

Despite the fact that the environmental problems are immeasurably worse than when the above was written, this analysis has lost none of its relevance. It is even more evident that growth, rather than being “a universal panacea,” is “a cause of disease.” Today “what is essential for success is a reversal, not a mere slowing down, of the underlying trends of the last few centuries.”30 Nevertheless, where capitalism is concerned, expansion is a requirement for the existence of the system itself. “Capitalism,” as Murray Bookchin observed, “can no more be ‘persuaded’ to limit growth than a human being can be ‘persuaded’ to stop breathing. Attempts to ‘green’ capitalism, to make it ‘ecological,’ are doomed by the very nature of the system asa system of endless growth.”31

Matters are equally intractable on the other side of the picture, as portrayed by Magdoff and Sweezy. Capitalism’s inability to engage in social and economic planning is reflected in decades of failed environmental policy. Although there have been some relatively minor environmental improvements, all attempts at comprehensive planning and action of the kind needed to avert what the scientific community is pointing to as a sure path of destruction have been systematically repulsed by the system. Instead technological change is invoked as a deus ex machina, allowing us to proceed along the current path of production, distribution, and consumption. There is no doubt that the social-technological potential already exists to address our most chronic environmental problems and to improve human existence—if we were to use present human capacities and natural resources in a rational and planned way. Yet, this existing potential is simply discarded: as all such rational solutions necessarily cross swords with the “antisocial [and anti-ecological] results of private ownership of the means of production.”

Here it is essential to recognize that capitalism in its monopoly stage is a system with such a high level of labor productivity that it is constantly prone to overaccumulation of capital and stagnation due to market saturation and scarcity of profitable outlets for productive investment. In order to continue to exist and to continue to reap monopolistic profit margins under these conditions it has mutated into an economy of built-in waste: both economic and ecological. Ours is a society characterized by (1) a gargantuan and ever-expanding sales effort penetrating into the structure of production itself; (2) planned obsolescence (including planned psychological obsolescence); (3) production of luxury goods for an opulent minority; (4) prodigious military and penal-state spending; and (5) the growth of a whole speculative superstructure in the form of finance, insurance, and real estate markets. It is a characteristic of such a system that much of the vast economic surplus of modern society shows up as economic waste built into production itself. All of this uses up enormous amounts of energy and resources and contributes to the ecological end-waste dumped on the planet. It also maximizes the toxicity of production, since plastics and other petrochemical-based goods are more toxic as well as cheaper economically.32 It is for this reason that leading systems ecologist Howard Odum, in a paper on Marx, insisted that the key to addressing our environmental problem—the way to find what he elsewhere called “a prosperous way down”—necessarily involves eliminating built-in “luxury and waste.”33

Among the early theorists of monopoly capitalism at the beginning of the twentieth century, it was the iconoclastic U.S. economist and sociologist Thorstein Veblen who most powerfully argued that a system dominated by giant corporations, prone to overproduction and overcapacity associated with its monopolistic pricing policy, was inherently characterized by the proliferation of economic waste.34 The result was the undermining of the use value structure of production, leading to a squandering of natural resources and human labor, a growing gap between the actual and potential production, and a failure to fulfill genuine social needs. Under monopoly capitalism (characterized by what economists call “monopolistic competition”), “The producers,” Veblen wrote,

have been giving continually more attention to the saleability of their product, so that much of what appears on the books as production-cost should properly be charged to the production of saleable appearances. The distinction between workmanship and salesmanship has progressively blurred in this way, until it will doubtless hold true now that the shop-cost of many articles produced for the market is mainly chargeable to the production of saleable appearances….

It is presumably safe to say that the containers account for one-half the shop-cost of what are properly called “package goods,” and for something approaching one-half of the price paid by the consumer. In certain lines, doubtless, as, e.g., in cosmetics and household remedies, this proportion is exceeded by a very substantial margin.35

Veblen’s argument on the proliferation of economic waste in the world of the giant corporation had an enormous influence on freethinking, political-economic critics in the United States and elsewhere for much of the twentieth century, including figures such as Scott Nearing, K. William Kapp, Vance Packard, and John Kenneth Galbraith.36

However, it was the Marxian political economists Paul Baran and Paul Sweezy in their workMonopoly Capital who were to take Veblen’s insight the furthest. The sales effort that characterized monopoly capitalism, they argued, went far beyond mere advertising and sales promotion. Rather what had emerged was “a condition in which the sales and production efforts interpenetrate to such an extent as to become virtually indistinguishable,” signaling “a profound change in what constitutes socially necessary costs of production as well as in the nature of the social product itself.” Baran and Sweezy referred to this phenomenon in their correspondence as “the interpenetration effect.” They illustrated this by referring to an influential economic study that had been carried out in regard to changes in car models. Estimating the direct yearly costs of car model changes in the 1950s, most of which were related simply to appearance or to the “horsepower race,” the st

Leave a comment